
Revisiting Client Puzzles for State Exhaustion Attacks Resilience
Can Proof-of-Work Actually Work?

Mohammad A. Noureddine

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL

nouredd2@illinois.edu

Ahmed Fawaz

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Urbana, IL

afawaz2@illinois.edu

Tamer Başar

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Urbana, IL

basar1@illinois.edu

William H. Sanders

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Urbana, IL

whs@illinois.edu

ABSTRACT
In this paper, we address the challenges facing the adoption of

client puzzles as means to protect the TCP connection establish-

ment channel from state exhaustion DDoS attacks. We model the

problem of selecting the puzzle difficulties as a Stackelberg game

with the server as the leader and the clients as the followers and

obtain the equilibrium solution for the puzzle difficulty. We then

present an implementation of client puzzles inside the TCP stack

of the Linux 4.13.0 kernel. We evaluate the performance of our im-

plementation and the obtained solution against a range of attacks

through experiments on the DETER testbed. Our results show that

client puzzles are effective at boosting the tolerance of the TCP

handshake channel to state exhaustion DDoS attacks by rate limit-

ing the flood rate of malicious attackers while allocating resources

for legitimate clients. Our results illustrate the benefits that the

servers and clients amass from the deployment of TCP client puz-

zles and incentivize their adoption as means to enhance tolerance

to multi-vectored DDoS attacks

CCS CONCEPTS
• Security and privacy→ Denial-of-service attacks;Web pro-
tocol security; Economics of security and privacy; • Networks→
Transport protocols;

KEYWORDS
Denial of Service Attacks, Proof-of-Work, Stackelberg Games, Trans-

port Control Protocol

1 INTRODUCTION
In recent years, the scale and complexity of Distributed Denial of

Service (DDoS) attacks have grown significantly. The introduction

of DDoS-for-hire services has substantially decreased the cost of

launching complex, multi-vectored attacks aimed at saturating the

bandwidth as well as the state of a victim server, with the possibility

of inflicting severe damages at lower costs [4, 20].

Common mitigations to large-scale DDoS attacks are focused

around cloud-based protection-as-a-service providers, such as Cloud-

Flare.When under attack, a victim’s traffic is redirected tomassively

over-provisioned servers where proprietary traffic filtering tech-

niques are applied and only traffic deemed benign is forwarded

to the victim. The relative success of such over-provisioning tech-

niques in absorbing volumetric attacks has pushed attackers to

expand their arsenal of attack vectors to span multiple layers of

the OSI network stack [2]. In fact, 39.8% of the attacks launched

through the Mirai botnet were aimed at TCP state exhaustion while

32.8% were volumetric [6]; the Mirai source code contained more

than 10 vectors in its arsenal of attacks [5].

State exhaustion and application layer attacks are particularly

challenging. Attackers can masquerade such attacks as benign traf-

fic by leveraging a large number of machines that can use their au-

thentic IP addresses [4], and can thus bypass cloud-based protection

services, capabilities, and filtering techniques [24–26, 31, 41, 42].

This is further exacerbated by the imbalance between the cost of

launching a multi-vectored DDoS attack and the cost of mitigat-

ing one. Launching an attack incurs an average cost of $66 per

attack and can cause potential damage to the victim of around $500

per minute, not including the costs paid to the protection service

provider [40]. Facing this hybrid and imbalanced attack landscape,

it is essential that we develop mitigation techniques that can defend

against the different attack vectors involved in recent DDoS attacks.

In this paper, we revisit the application of client puzzles as a

mechanism to resist state exhaustion DDoS attacks. Client puz-

zles are a promising technique that alleviates the cost imbalance

between the attacker and the defender with only software-level

modifications at the end hosts and no changes to the Internet infras-

tructure [16, 21]. At their essence, client puzzles attempt to hinder

the malicious actors’ ability to flood the server at low cost by forc-

ing all clients, both benign and malicious, to solve computational

puzzles for each request they make.

While TCP client puzzles provide a promising technique to resist

state exhaustion attacks, they have not seen their way into adoption

due to (1) the lack of guidelines on the difficulty setting, and (2)

the lack of publicly available implementations and performance

studies [16, 30, 37]. A TCP client puzzle’s difficulty determines the

computational burden placed on the server and clients – an easy

puzzle offers better usability at the cost of security while a harder

puzzle provides better security but can deter users. The lack of

1

ar
X

iv
:1

80
7.

11
89

2v
1

 [
cs

.C
R

]
 3

1
Ju

l 2
01

8

guidelines on the difficulty setting forces administrators to specu-

late whether to overload their servers or turn users away, leading

them to overlook puzzles as an effective protection mechanism.

Additionally, the few existing implementations of TCP client puz-

zles [12, 15, 37, 38] are outdated and are not publicly available,

further hindering the community’s ability to evaluate their effec-

tiveness and adopt them.

In this work, we make the following contributions to address the

shortcomings in TCP client puzzles research. First, we introduce a

theory for determining an appropriate TCP puzzle difficulty based

on the game-theoretic Stackelberg interaction between the defender

and the clients [7, 33, 34] (Sections 3 and 4). Using the theory we

established, we provide a practical method to select the TCP puzzles

difficulty based on the defender’s capabilities and the expected

computational prowess of the clients.

Then, we design, implement and evaluate an extension to TCP to

support client puzzles using our practical difficulty setting method.

We incorporate puzzles into the TCP handshake and do not interfere

with the operation of the protocol otherwise. We efficiently encode

the challenges and their solutions into the options of the TCP header
resulting in a TCP puzzles extension with low packet-size overhead.

Then, we implemente TCP puzzles as part of the Linux kernel TCP

stack (Section 5). To the best of our knowledge, we provide the first
publicly available implementation of TCP puzzles for the Linux

kernel
1
. Our implementation maintains the statelessness property

of client puzzles: the server relies solely on the status of its internal

queues to infer the presence of an attack and creates no state until

a puzzle is verified to be valid.

We evaluated the performance of our TCP puzzles against a range

of attacks through experiments performed using the DETER testbed

(Section 6). Our results show the effectiveness of TCP puzzles in

boosting tolerance against state exhaustion attacks. First, a server

using TCP client puzzles, configured to use the game-theory-based

difficulty setting method, tolerates both SYN and connection floods

that would bring down an unprotected server or one that relies

solely on SYN cookies [9]. Furthermore, clients willing to solve

the challenges are almost always able to receive service during

an attack. Moreover, TCP puzzles result in negligible overhead for

the server, while significantly increasing the cost of launching a

DDoS attack – the size of a botnet has to increase by a factor of

200, and IoT-based botnets become unable to launch such attacks

– thereby removing the low-cost assets in an attacker’s arsenal.

We believe that TCP client puzzles can be a strong companion to

protection-as-a-service solutions to further resist multi-vectored

DDoS attacks.

2 BACKGROUND AND RELATEDWORK
In this section, we review the TCP three-way handshake and TCP

state exhaustion attacks. We then present client puzzles and the

limitations of the current approaches to using them for TCP state

exhaustion attacks resistance. For the remainder of this paper, we

use the terms puzzles and challenges interchangeably.

1
The open sourced patch for v4.13.0 is available at https://github.com/nouredd2/linux

Client Server
SYN

Enqueue

SYN-ACK

ACK

Dequeue on accept()

(a)

Client Server
SYN

SYN- ACK || challenge

ACK || solution

Enqueue if solution
correct.

Dequeue on accept()

(b)

Figure 1: TCP three-way handshake with (a) no protection
and (b) challenges enabled.

2.1 TCP primer and SYN flood attacks
In current TCP implementations, a client initiates a TCP connection

by sending a SYN packet to the server. Upon receiving the SYN

packet, the server saves state for this new incoming connection

request in a data structure, often referred to as the Transmission

Control Block (TCB), and then sends a SYN-ACK packet and waits

for the client to acknowledge receiving this packet. A half-open

connection is one for which the client’s ACK packet has not been re-

ceived yet; those new connection sockets are queued into a listen
queue. The number of elements in this queue is upper bounded by

an implementation parameter, called the backlog, that bounds the
server’s memory usage as to avoid having the system’s resources ex-

hausted. Once a connection has been established, the server moves

it into the accept queue. A socket is removed from the accept

queue once the server’s application accepts it for processing. On

the other hand, a half-open connection socket is removed from the

queue if it expires before it receives an acknowledgment from the

client [32]. Once the server’s listen or accept queues overflow, it

either (1) no longer accepts incoming connections or (2) drops old

connection sockets from the appropriate queue to free space for

newer connections.

TCP SYN flood attacks aim to overflow a victim server’s listen
queue by overwhelming it with half-open connection requests. The

attack forces the server to drop new incoming connections denying

new clients from receiving service [14]. The attacker’s sending rate

should be high enough to overflow the server’s queue before the

connection reset timers expire. A variant of the TCP SYN flood

attack is a TCP connection flood in which an attacker attempts to

overflow the server’s accept queue for the same purpose of denying

legitimate clients the opportunity to connect to the server. In a

connection flood, the attacker completes the three-way handshake

instead of leaving the connections half-open.

Among the server-based mitigations to SYN flood attacks, the

SYN cache and TCP SYN cookies are the most common [9, 14, 23].

The SYN cache reduces the amount of memory needed to store state

for a half-open connection by delaying the allocation of the full

TCB state until the connection is established. Servers implementing

SYN caches instead maintain a hash table for half-open connections

that contains partial state information and provides fast lookup and

insertion functions. SYN cookies, on the other hand, operate by

eliminating the source of the vulnerability in TCP implementations:

the state reserved for half-open connections in the TCB. When SYN

cookies are enabled, the server encodes a new TCP connection’s

parameters as a cookie in the packet’s initial sequence number, and

2

https://github.com/nouredd2/linux

refrains from allocating state for a new connection until the cookie

is again received from the client and validated.

The SYN cache aims to contain TCP SYN attacks by reducing the

amount of state maintained on the server for half-open connections.

Although efficient against a single attacker (or a small botnet), SYN

caches do no provide protection against larger botnets for which

the attack rate can easily exceed the space allocated for the cache.

Once the cache is full, the server will default to the same behavior it

performed when its backlog limit is reached, defeating the purpose

for which the cache is used. Although SYN cookies eliminate the

key target of the SYN flood attack (the TCP backlog), they do not

provide protection against large botnets. Attackers in control of

a large number of zombie machines with valid (non-spoofed) IP

addresses can, without added effort, overload the server’s listen
queue with valid TCP requests at a rate that surpasses the server’s

ability to accept them. By only tackling the problem on the server

end, SYN cookies do not present a mechanism to strip the malicious

actors from the ability to conduct exhaustion attacks; it is also not

clear how SYN cookies can be generalized to serve as protection

schemes for different types of state exhaustion attacks [37].

2.2 Client puzzles
Cryptographic client puzzles have been proposed to counter an

asymmetry in today’s Internet: the clients can request substantial

server resources at relatively little costs. Client puzzles alleviate

this asymmetry by forcing clients to commit compute power as

payment for the server resources that they are requesting, thus

improving state exhaustion attacks resistance.

Client puzzles have been previously proposed as a mechanism

to combat junk mail [13], website metering [18], protecting the

network IP and TCP channels [15, 21, 27, 37], protecting the TLS

connection setup [12, 30], and protecting the capabilities-granting

channel [31]. Additionally, client puzzles are at the heart of the

mining process of nowadays’ crypto-currencies [10, 28]. Upon re-

ceiving a SYN packet, the server computes a puzzle challenge and

sends it back to the client. At this time, the server does not commit

any resources to the initiating client. After receiving the challenge,

the client will employ its computational resources to solve the chal-

lenge and send the solution to the server. If the solution is correct,

the server then commits resources to the client and accepts the

connection. Otherwise, the server drops the connection. For it not

to break the three-way handshake, the server piggybacks the puzzle

onto the SYN-ACK packet. The client can then solve the puzzle and

send it along with its corresponding ACK packet.

Despite its promise, several challenges face the adoption of client

puzzles as a practical measure of defense against state exhaustion

attacks. In the following, we discuss the challenges and our methods

to address them. First, there is a shortage of implementations that

allow for the comparison and the evaluation of different types of

challenge creation and verification mechanisms. In this paper, we

implement clients puzzles in the Linux 4.13.0 kernel and provide

access to our implementation in the form of a kernel patch.

Second, an important advantage of client puzzles is the ability

to increase the difficulty of the challenges as the intensity of the

attacks increases. However, there are no concrete and theoretically-

backed recommendations for selecting the appropriate challenge

difficulties. The work in [37] attempts to alleviate this problem by

requiring clients to place bids (computing resources) on the server’s

resources. A client starts by asking for service without committing

resources. If the server refuses to provide service, the client solves

increasingly harder puzzles until the server accepts its connection

request. The server may reply to a failed attempt with an acceptable

puzzle hardness for the client to solve. This approach suffers from

two main drawbacks. First, it violates the TCP protocol by adding

one or more extra round trips to the connection establishment

phase. More importantly, this mechanism can be exploited to target

clients as it moves the puzzle initiation process from the server to

the client. An attacker would congest a client’s egress links to trick

her into believing that the server is requiring her to solve harder

puzzles. The attack will lead the client either to choose to refuse

service or to commit more resources than needed. In this work, we

believe that the process of determining the puzzle difficulty should

remain the server’s task. We, therefore, present a game-theoretic

model that can be used to determine an appropriate difficulty given

the server’s provisioning and load.

Laurie and Clayton [22] present an economic analysis to argue

against the use of proof-of-work mechanisms to combat email spam.

We agree with the authors’ conclusion that computational puzzles

do not possess “magical” properties making them practical in every

situation, and that proof-of-work must be properly analyzed before

adoption; which is what we sought to achieve in this work. We

argue that memory- and computational-resource exhaustion at-

tacks are of a different nature than spam emails. First, unlike spam,

attacker benefits from TCP state exhaustion attacks do not depend

on the involvement of a human user to click on malicious links.

Second, DDoS attacks nowadays are mostly launched from compro-

mised botnet machines and not from specialized attacker hardware.

Thus, beyond the initial compromise cost, launching an attack is

virtually free for the attacker. We believe that our theoretical and

experimental results showcase the merits of proof-of-work mecha-

nisms in tolerating SYN and connection floods. In fact, our work

complements the security analysis performed in [11, 19, 36] with

the required protocol engineering and design steps, allowing for a

rich and improved understanding of client puzzles for resilience to

state exhaustion attacks.

3 THE GAME-THEORETIC MODEL
In this section, we introduce our game-theoretic model to compute

the puzzle difficulty levels that balance the clients’ computational

load as well as the server’s ability to combat TCP state exhaustion

attacks and minimize its time to verify puzzle solutions. We first

present the threat model and assumptions that we make in our

research and then turn to discussing our game-theoretic model.

3.1 Assumptions and threat model
In this paper, we make the following assumptions.

Assumption 1. Common state exhaustion attacks, specifically

TCP connection floods as well as higher-layer attacks, require the

presence of a two-way communication channel between the at-

tacker bots and the victim server. This is evident from the nature of

the state exhaustion attacks as well as their ability to circumvent

scrubbing and filtering techniques by sending lower volumes of

3

traffic [4]. This implies that during a single-vector state exhaustion

attack, the victim server is able to receive packets from and send

packets to its legitimate users as well as the attackers’ machines. In

the presence of a multi-vectored attack, we assume the presence

of volumetric attack mitigation techniques (such as cloud-based

protection-as-a-service); client puzzles will complement those tech-

niques to provide layered DDoS defenses to hybrid attacks.

Assumption 2. We assume that the attackers can control a large

number of zombie machines that form botnets to coordinate large-

scale attacks aimed to deplete a target server’s resources. However,

we assume that that attacker’s army of bots comprises commodity

machines (e.g., workstations, mobile phones, and IoT devices) but

not servers or clusters with large computing resources. Such ma-

chines, being part of enterprise solutions, are harder to compromise

than commodity machines as they would employ better protective

mechanisms. We further assume that the attackers can capture and

replay packets, but are not able to change their content. Protection

against packet integrity attacks is beyond the scope of this paper.

The above assumptions are similar to the ones made in [21]

and [37]. Moreover, client puzzles do not require the end-server

to differentiate between the malicious and benign traffics. In fact,

the low volume nature of state exhaustion attacks and the require-

ment for quick and effective protective mechanisms can impede

the accuracy of such detection mechanisms. Client puzzles, on the

other hand, can provide timely protection against state exhaustion

attacks as long as the benign clients are willing to invest computing

resources to receive service and thwart the attack.

3.2 Difficulty Selection as a Stackelberg Game
We formalize the problem of selecting the puzzle difficulty similarly

to a network pricing problem [7, 33, 34]. We model the problem as

a Stackelberg game between the service provider and the service

users. The service provider is the leader and is responsible for

setting the difficulty of the puzzles that the clients must solve to

receive service. The users are the followers who then choose their

request rates to optimize their local utility.

Our model rests on the assumption that all clients are selfish

agents seeking to optimize their local utilities; we do not specifically

posit a model for malicious bots. This assumption is rooted in the

following observations. First, before the attack starts, the server

does not have means to distinguish between benign clients and

malicious bots. Second, TCP by default treats every connection

request it receives as a benign request, and thus sends an ACK

packet back without checking whether the request is sourced from

a benign user or a compromised bot. Third, positing a specific

attacker model would require the estimation of attacker preferences

and utilities, to which the server has no means of measuring. This

could create a schism between the model and its application in

the real world. We therefore treat every request as if it is coming

from a benign client, and capture the presence of a large botnet by

obtaining the asymptotic solution for our model.

Let xi be user i’s request rate, for i ∈ {1, 2, . . . ,N }, where N
is the total number of users in the system. Consequently, x−i =∑N
j,i x j is the total request rate of all the other users. Our model

captures the puzzle’s difficulty using the expected number of hash

operations needed to find and verify its solution. Let pi be user i’s

puzzle, ℓ(pi) is then the expected number of hash operations that

user i has to perform to find solution to pi , and S(x̄ =
∑
i xi) be the

expected service time for a user’s request. User i’s utility can then

be written as

ui (xi ,x−i ,pi) = wi log(1 + xi) − ℓ (pi)xi − S(x̄) (1)

wi is a user specific parameter that models the users valuation of

the provider’s service. In other words, wi represents the amount

of work user i is willing to pay per request. log (1 + xi) represents
the user’s expected benefit when making decisions under risk or

uncertainty [7, 35]. The utility function can be interpreted as the

difference between the user’s expected benefit and the amount of

work she has to put to solve a puzzle per request added to the

expected service delay she incurs. Each user, being a rational and

selfish agent, will choose a request rate that optimizes her local

utility. This will lead to the users adopting the Nash Equilibrium

(henceforth referred to as equilibrium) rates x∗i for i ∈ {1, 2, . . . ,N }
such that

ui
(
x∗i ,x

∗
−i ,pi

)
≥ ui

(
xi ,x

∗
−i ,pi

)
, ∀xi > 0,∀i (2)

The service provider’s problem is to find an appropriate puz-

zle difficulty such that (1) it can effectively reduce the impact of

state exhaustion attacks and (2) minimize the amount of work the

server does to generate and verify puzzles. Let P be the space

of all possible cryptographic puzzles and д(pi) and d(pi) be the

expected numbers of hash operations that the provider needs to

perform to generate and verify a solution to puzzle pi , respectively.
We model the provider’s problem as finding the set of puzzles

p∗ =
{
p∗i ∈ P, i ∈ {1, 2, . . . ,N }

}
such that

p∗ = arg max

p∈PN

N∑
i=1

(ℓ(pi) − (д(pi) + d(pi)))x∗i (3)

Equation (3) captures the provider’s goal of maximizing the amount

of work that the clients have to perform to obtain service under at-

tack while minimizing the amount of work it must perform to gener-

ate puzzles and verify solutions. This formulation, in fact, captures

the trade-off between the puzzle’s complexity and the expected

work that the provider needs to perform to generate and verify puz-

zles. The tuple

(
x∗ :=< x∗

1
,x∗

2
, . . . ,x∗N >, p

∗
:=< p∗

1
,p∗

2
, . . . ,p∗N >

)
represents the solution to the full Stackelberg game.

We find the solution by first fixing p and finding the client’s

equilibrium request rates x∗(p). If such a solution exists, we can

then solve for the optimal puzzles p∗ by using x∗(p) in Equation (3).

4 APPLICATION TO THE JUELS PUZZLE
SCHEME

We now show how the framework we introduced in Section 3 can

be applied to the puzzles protocol presented in [21]. We first de-

scribe the puzzles protocol from [21] and then show the solutions

we obtain using our framework. For our modeling and analysis,

we assume that the server issues puzzles with the same difficulty

for all of its clients, i.e., ℓ(pi) = ℓ(pj) ∀i, j ∈ {1, 2, . . . ,N }. This as-
sumption ensures a stateless protocol and is following the IETF TLS

puzzles draft [30] and is recommended in previous research [21].

A puzzle in this scheme is a bitstring of length l bits having
m < l bits of difficulty. Figure 2 illustrates the construction of

4

Figure 2: Puzzle construction [21]

a challenge P . The puzzle issuing server starts by creating the

hash y = h (s,T , packet-level data), where s is a secret key; T is a

timestamp; packet-level data is a concatenation of the TCP Initial

Sequence Number (ISN), the source and destination IP addresses,

and ports; and h is a collision-resistant hash function. The server

challenges a client to provide k solutions to a puzzle P formed by

the first l bits of y.
Upon receiving P , the client computes, by brute force, k solutions

{s1, . . . , sk } such that for 1 ≤ i ≤ k , |si | = l and the firstm bits of

h(P | | i | | si) match the firstm bits of P , where h is the same hash

function that the server used – | | denotes bit string concatenation.

The client then sends the solutions back to the server that in turn

verifies their validity and subsequently accepts the request.

4.1 The Solution
Since obtaining a single solution of lengthm bits is best done by

brute force, it requires a maximum of 2
m

and an average of 2
m−1

hashing operations. Since each puzzle requires k solutions, solving

a puzzle then requires an average of k × 2
m−1

hashing operations.

Therefore, for each user i ∈ {1, 2, . . . ,N }, ℓ(pi) = k × 2
m−1

.

To capture the expected service time for the users, called S(x̄), we
abstract the server’s operation by anM/M/1 queue with a service

rate µ. We argue that this abstraction is enough for our purpose

since the attacks we are interested in target the TCP stack and are

independent of the application that the server is running; they are

only affected by the application’s ability to remove established con-

nections from the accept queue. The service rate µ can be obtained

by running stress tests on the application provider’s infrastructure

and can capture different service optimizations such as replications

and caching. Subsequently, we express the expected service time as

S(x̄) = 1

µ−x̄ , when x̄ < µ. This condition assumes that the server is

well-provisioned to handle the users’ load under regular conditions.

Therefore we rewrite Equation (1) as

ui (xi ,x−i ,pi) = wi log(1 + xi) − k × 2
m−1xi −

1

µ − x̄
(4)

We now turn to the provider’s formulation. We represent the

space of all possible puzzles as the set of tuples (k,m) where k ∈ N
is the number of solutions requested andm ∈ N is the number of

bits of difficulty in each. Therefore we writeP = {(k,m) ,k,m ∈ N}.
As previously discussed, every challenge can be generated using

only one hash operation, therefore we write д(pi) = 1, ∀i .

When the server receives a solution, it generates a hash from

the received packet’s header and then verifies each of the k solu-

tions until it finds a violating one or deems the puzzle correctly

solved. If the server chooses which of the k solutions to verify uni-

formly at random, it then needs an average of
k
2
hashing operations.

Therefore, we can write d(pi) = 1 + k
2
, ∀i .

Since we assume that the service provider issues puzzles with the

same difficulty for all users, we henceforth write p = (k,m) = pi ,∀i .
We can then rewrite Equation (3) as

p∗ = arg max

p∈P

N∑
i=1

(
k × 2

m−1 − 2 − k

2

)
x∗i (p) (5)

Letwav be the average client valuation of the server’s service and

α be the server’s asymptotic service rate per user, under normal

operation.

Theorem 1. The Nash equilibrium is achieved at p∗ = (k∗,m∗)
such that:

ℓ(p∗) = k∗ × 2
m∗−1 =

wav
(α + 1) (6)

Proof. We show the proof of Theorem 1 in Appendix A. □

4.2 Analysis
The equilibrium difficulty we obtained in Theorem 1 illustrates an

important design tradeoff between the server’s provisioning and

the difficulty of the puzzles that the clients should solve when the

server is under attack. A well-provisioned server, i.e., one for which

α > 1, will be able to absorb a larger fraction of the attack and

subsequently asks its clients to solve less complex challenges. In

that case, the clients help the server tolerate the attack and commit

fewer resources than they are willing to (the average number of

hashes they would need to perform to solve a challenge is less

than wav) — the client achieves high utility. On the contrary, a

server that is not able to handle all of its clients’ regular load, i.e.,

one for which α < 1, would require its clients to solve harder

puzzles (p∗ ≃ wav) and thus achieve lower utility levels. Therefore,

to tolerate an attack, the server asks its clients to commit more

resources risking more clients dropping out as the intensity of the

attack increases. Those clients with wi < wav would consider it

more beneficial for them to drop out since it would be too costly as

a function of the resources committed to obtaining a connection.

We further note that our model and solution are agnostic to the

application that is run by the server as well as the specific server

configuration. This, in fact, is consistent with TCP being a transport

layer protocol that is independent of the type of application running

on top of it. All our model requires is an estimate of the server’s

capacity to handle large loads (i.e., the parameter α) which can be

obtained by running appropriate stress tests. Server replication and

load balancing are then captured in our model through an increase

in the value of α (given the same load).

Finally, we note that our result is not affected by the presence of

long-lived TCP connections (for example, if using HTTP/1.1 [17]).

The puzzles protect the TCP connection establishment channel and

allows users to connect to the server in the presence of malicious

attacks. The lifetime of the established connection is not affected by

the presence of puzzles or lack thereof; in the case of HTTP/1.1, the

5

0 200 400 600 800 1000
Time (ms)

0

1

2

3

4

Nu
m

be
r o

f h
as

he
s

1e5

(a)

cpu1
cpu2
cpu3

0 200 400 600 800 1000
Number of concurrent requests

0

5

10

15

20

25

Se
rv

ic
e

pa
ra

m
et

er

(b)

950

1000

1050

1100

1150

Se
rv

ic
e

ra
te

Figure 3: Performance profiles of (a) client (wav) and (b)
server (α).

goal of the challenges is to allow clients to establish the TCP connec-

tion upon which the HTTP session persists. Moreover, the solution

we present in Theorem 1 captures p∗ in terms of expected number

of hash operations that a client needs to perform per attempted
connection, whilewav represents the average client valuation of the

requested service per request. For an HTTP/1.1 persistent session,

the client would only need to pay p∗ hashes once.

4.3 Obtaining model parameters
The model parameters,wav and α , relate to the performance capa-

bilities of the server and the clients. We provide an experimental

procedure to obtain the model parameters. Then we apply the pro-

cedure to an experimental setup to show the Nash strategy.

First,wav is the number of hashes we assume the client is willing

to perform to complete the TCP handshake. It represents the level

of acceptable service degradation as each TCP connection will take

longer to finish. To findwav , we assume that 400 ms is adequate

time to establish a TCP three-way handshake for a legitimate client

when the server is under attack. Usability studies show that a 400ms

delay does not interrupt the user’s flow of thoughts [29]. Using this

assumption, we find the number of hashes a machine can perform

for 400 ms by profiling the machines. wav is the average value

obtained during the experiments.

Second, α is the service parameter of the server. It is directly

related to the processing power of the server. To obtain the parame-

ter, we start by stress testing a server. The stress test varies the rate

of requests per second and records the time it takes to get service

for each rate. We compute α as the ratio of service rate over the

number of concurrent requests.

Finally, after obtainingwav and α , we calculate the equilibrium
difficulty parameters (k∗,m∗) using Equation (6). The choice of

those parameters exposes a tradeoff between the number of hashes

the server needs to verify a solution and the probability that an ad-

versary can guess a solution. Choosing a very small k will increase

the attacker’s ability to guess a solution, and selecting a large k will

increase the solution verification time. On the other hand, by se-

lecting lower values of k , the challenge difficultym would increase

allowing the server to offset its lack of computational resources

onto its clients by asking them to solve harder challenges.

4.4 Example
In the following, we present an example for computing the Nash

equilibrium difficulty for a server serving a variety of machines

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Opcode 0xfc Length k m

ℓ Preimage · · ·
· · · preimage Padding (NOP)

Figure 4: TCP Options block for a SYN challenge.

with varying processing powers. Starting with the client, we obtain

wav by profiling the number of SHA-256 operations per second.

Figure 3 (a) shows the profile of three CPU types: (1) cpu1 is an

Intel Xeon E3-1260L quad-core processor running at 2.4 Ghz, (2)

cpu2 is an Intel Xeon X3210 quad-core processor running at 2.13

Ghz, and (3) cpu3 is an Intel Xeon processor running at 3Ghz.

The average number of hashes that can be performed over the

three types of CPUs is wav = 140630. Although the CPUs we

profiled are not an exhaustive representative set of the processing

powers of a typical clientele, in all of our experiments, we leveled

the play-field by providing all the attackers with similar or better

computational powers. In other words, if a client can perform a

three-way handshake in 400 ms, a typical attacker can perform the

same connection in a time equal to or less than 400 ms.

Then we estimate the server’s α parameter. We deployed an

Apache2 web server on a dual Intel Xeon hexa-core processor run-

ning at 2.2 GHz with 24 GB of RAM. We then used the apache

benchmarking tool ab [1] to profile the performance of the server

under regular and high loads. Figure 3 (b) shows the service rate

(µ) and the service parameter α of our server as the number of

concurrent requests attempted by ab increases. Our server was

able to maintain a constant service rate under high load (µ ≃ 1100

requests/s), and thus the parameter α converged to a value of 1.1 as

the load increased. Thus for our example, withwav = 140630 and

α = 1.1, the TCP puzzle difficulty is set at the value k∗ = 2 and the

difficultym∗ = 17 bits from Equation (6). That is, each challenge

requests two solutions with 17 bits of difficulty each.

5 IMPLEMENTATION
We implemented the TCP challenges in the Linux kernel’s TCP

stack using the Linux 4.13.0 source. The puzzles are turned off by

default and are only enabled when the socket’s queue is full. We

designed our implementation in a way such that the challenges

take precedence over the SYN cookies once the queue is full; we

do however support SYN cookies as a backup option. We provided

support for dynamically tuning the parameters of the challenges

through the kernel’s sysctl interface. Both k andm can be adapted

at any point during the server’s runtime.

We generate the challenge’s pre-image by hashing a string con-

taining: (1) a server’s secret key, generated once at the start of a

socket’s lifetime, (2) the server’s current timestamp, (3) the SYN

packet’s source and destination IP addresses, and (4) the SYN packet’s

source and destination port numbers. For the hashing function, we

used the Linux kernel’s SHA256 implementation since it provides

the necessary pre-image resistance guarantees [21].

In order not to break the TCP definition, we inject the challenges

and solution into the options field of the TCP SYN-ACK and ACK

packets. Figure 4 shows the format of the TCP option we imple-

mented to transmit a challenge in the SYN-ACK packet.We chose an

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Opcode 0xfd Length MSS value

Wscale Solution · · ·
· · · solution Solution · · ·
· · · solution Padding (NOP)

Figure 5: TCP Options block for a SYN solution with k = 2.

unused opcode (0xfc) to represent a challenge option. The Length
field indicates the length of each option block in bytes, including

the opcode and the field itself. We allocate one byte each for the

number of solutions k , the difficulty of the puzzlem (in bits), and

the pre-image and solution length l . Next, we insert the challenge’s
pre-image. Finally, following the TCP stack requirement, each op-

tion block must be 32 bits aligned, we, therefore, insert 0 to 3 NOP

fields to ensure alignment.

Figure 5 shows the format of the TCP option used by a client to

send a computed solution. Similar to the challenge option, we made

use of the unallocated opcode (0xfd). Since the server keeps no state

about the client after receiving the first SYN packet, the client safely

assumes that the server has ignored its previously announced Max-
imum Segment Size (MSS) andWindow Scaling (Wscale) parameters.

We then resend the MSS and Wscale values within the solution

block and then write down each of the k solutions and perform

alignment to 32 bits.

The benefits of adding the MSS and Wscale parameters to the so-

lution option block are twofold. First, the challenge protocol would

be self-contained; implementation of the TCP stack usually ignores

all options other than timestamps in any packet other than the SYN

and SYN-ACK packets. Therefore supporting the challenge protocol

does not require changes to legacy options parsing. The addition

also provides us with the benefit of reducing the space needed to re-

send the options in the ACK packet. For example, sending the MSS

values as a separate option would require 4 bytes while we only

need 2 in the case of the self-contained solution option. Second, we

encode the MSS value using 16 bits (as defined in the specification

of TCP), instead of the 3 bits provided by SYN cookies. Additionally,

when SYN cookies are in operation, the client and the server can

no longer agree on the window scaling parameters, which reduces

the performance of the TCP connection.

Also, modern implementations of the TCP stack support the

exchange of timestamps as options in the TCP header to improve

the estimation of the connection’s round-trip time. Our implemen-

tation makes use of the timestamps option, whenever available, to

generate, solve, and verify a challenge. However, in the case where

the timestamps option is not put to use (for example turned off by

the client or the server), our implementation embeds the timestamp

used in the generation of the challenge (an additional 4 bytes) in

both the challenge and the solution option blocks.

Furthermore, when the server’s accept queue overflows, its de-

fault behavior is to reject new connections, even if the protection

mechanism is in place. However, for our purposes, since the goal

of the puzzle protection mechanism is to throttle the rate of all

clients (both benign and malicious), we modified the listening TCP

socket’s implementation to send a challenge when the protection

is in effect, even if the accept queue overflows. When the server re-

ceives an ACK packet while under attack, it first checks if the queue

is full and only performs the verification procedure when there is

room to accept the connection. If the queue is full, the server will

ignore the ACK packet. In such a case, the user (both benign and

malicious) assumes that the connection has been established and

will begin sending application level packets thus causing the server

to reply with a reset (RST) packet to signal that the connection was

not established. This implementation choice achieves the goal of

deceiving the malicious users that they have established a connec-

tion while they have not; the malicious agents that do not send

application-level packets will not receive a RST packet to indicate

that the server has dropped the connection.

Finally, to combat replay attacks, we make use of the timestamp

in the solution to check if a challenge has expired. This stateless

mechanism hinders an attacker’s ability to replay solution packets

since tampering with the timestamp will cause the solution verifica-

tion to fail. The timeout interval can be tuned through the kernel’s

sysctl interface.

6 EVALUATION
Using our modified Linux kernel, we evaluated the performance

of the TCP puzzles in safeguarding a server TCP connection es-

tablishment channel against both SYN and connection floods. The

difficulty of the puzzles employed is the Nash solution that we

established in Section 4.

We performed the experiments using DETER [8], a cybersecurity

testbed based on Emulab provided by the University of Southern

California. DETER allows for reproducible experiments that are

described using network simulator (ns) scripts and an agent activa-

tion module. The testbed automatically deploys and executes the

scenarios.

The goals of our experiments are to evaluate (1) the effectiveness

of TCP puzzles in the protection against state exhaustion attacks,

(2) the impact of TCP puzzles on service quality, and (3) the abil-

ity of the Nash equilibrium puzzle difficulty to balance the client

solution and the server verification loads as well as the ability to

effectively rate limit malicious attackers. We perform the experi-

ments using a test deployment of a single server providing service

to a set of clients while being the target of a state exhaustion attack

launched by a botnet of malicious machines. Specifically, our server

runs an apache2 HTTP server with an application that accepts

“gettext/size" requests and returns messages containing size
bytes of random text. The clients, on the other hand, run an HTTP

client that requests text from the server at a pre-specified rate.

While in a real-world deployment, service would be provided by

a farm of servers, our scenario uses only one server and a smaller

set of clients. In those larger systems, since a load balancer forwards

TCP connection requests to the individual servers, an attack has

to ensure its wave of requests reaches all of the servers to effec-

tively deny service. Therefore, adding more servers allows a service

provider to tolerate bigger attacks by large botnets. Our results

show that, in essence, a server using TCP puzzles as means for state

exhaustion DDoS protection can tolerate a larger botnet than an

unprotected server. We hence argue that when all the servers in

a farm employ our protection, the system will be able to tolerate

7

a larger botnet that is proportional to the improved tolerance of

a single server. Our experiment scenario thus studies the protec-

tion offered to a single server; the results are to scale when more

puzzles-equipped servers are deployed in a load balancing scheme.

We consider two types of attackers, the first uses randomized

source IP addresses to target the server’s listen queue with a flood
of half-open TCP connections (using hping3). The second type uses
real IP addresses to flood the server with established connections

(using nping) in an attempt to fill its accept queue and prevent new,
legitimate, connections from being established. Unless otherwise

stated, we use the following experiment parameters. The set of

clients contains 15 machines requesting 10, 000 bytes of data at

exponentially distributed time intervals, with rate rc = 20 requests

per second. The botnet consists of 10 machines running an attack

at a constant rate ra = 500 requests per second, amounting to

an overall attack rate of 5, 000 packets per second (pps). All of

the malicious machines are equipped with a computational power

equal to, or greater than, that of the clients’ machines. All of the

machines in our setup are equipped with our modified kernel, with

the exception of Experiment 5 in which we study the impact of the

puzzles when some of the machines do no deploy the patch.

Finally, with the exclusion of Experiment 6, all the experiments

use the same network topology with well-provisioned link band-

widths so as to avoid link saturation. The backbone consists of three

routers fully connected with 1 Gbps links. The server connects to

the network with a 1 Gbps link while all the other hosts connect to

the network with 100 Mbps links. All of our agents run on physical

machines with Ubuntu 16.04 LTS along with our patched Linux

4.13.0 kernel. We provide more details about the hardware specs of

the machines we used as well as the network topology (Figure 16) in

Appendix A. We deploy the packet monitoring software, tcpdump,
on all of the machines and use the captures to measure the through-

put at the server, the throughput at each host, the TCP connection

time, and the number of dropped TCP connections. We elect to re-

port on the throughput since it represents a direct assessment of the

impact of puzzles on our application, nevertheless we acknowledge

that different applications will require different metrics.

6.1 Experiment 1: Impact of puzzles on client
performance

In the first experiment we show that the puzzles’ impact on the

connection time can be controlled by setting the parameters k and

m. We study the impact of TCP puzzles by varying the number of

solution required per challenge, k , over the set {1, 2, 3, 4} and the

number of difficulty bits per solution,m, over the set {4, 10, 16, 20}.
Figure 6 shows the cumulative density function (CDF) of the

connection time of a client node as the parameters k and m are

varied. We first note that any increase in either parameter causes

the connection times to increase. However, each parameter affects

the rate of change of connection time with a different magnitude.

More to the point, increasing the number of difficulty bits increases

the connection time with an exponential factor. For example, when

k = 1, the average connection time form = 4 is 2.0 µs while it is 286
µs form = 16. On the other hand, changing the number of puzzles

increases the connection time with a constant factor, in m = 16

the average connection time for k = 1 is 286 µs while the average

100 101 102 103 104

0.0
0.3
0.6

1.0
CDF for k=1

100 101 102 103 104

CDF for k=2

100 101 102 103 104

Connection Time (s)

0.0
0.3
0.6

1.0
CDF for k=3

m=4 m=10 m=16 m=20

100 101 102 103 104

Connection Time (s)

CDF for k=4

Figure 6: CDF of the connection time

0 100 200 300 400 500 600
Time (seconds)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

bp
s)

Client

nodefense cookies challenges-m8 challenges-m17

0 100 200 300 400 500 600
Time (seconds)

0

50

100

150

200

250

Server

Figure 7: Throughput at a client and server during SYNflood.

0 100 200 300 400 500 600
Time (seconds)

0

5

10

15

Th
ro

ug
hp

ut
 (M

bp
s)

Client

nodefense cookies challenges-m17

0 100 200 300 400 500 600
Time (seconds)

0

50

100

150

200

Server

Figure 8: Throughput at a client and server during a connec-
tion flood.

connection time for k = 4 is 558 µs. By tuning both variables of

the puzzle difficulty, the defender has a fine-grained control over

the connection time for a host and thus its ability to perform state

exhaustion attacks.

6.2 Experiment 2: SYN and connection flood
protection

In the second set of experiments, we show that a server running

TCP puzzles is able to tolerate a SYN flood and a connection flood.

We also show that TCP cookies do not offer protection during a

connection flood.

8

0 200 400 600
Time (seconds)

0

5

10

15

20

%
 C

PU
 U

til
iza

tio
n

Client and Server

client server

0 200 400 600
Time (seconds)

0

20

40

60

Attacker

Figure 9: Impact of client puzzles on the cpu utilization dur-
ing a connection flood attack.

0 200 400 600
Time (seconds)

0

1000

2000

3000

4000

Qu
eu

e
siz

e

Challenges

0 200 400 600
Time (seconds)

0

1000

2000

3000

4000

Cookies

Listen Queue Accept Queue

Figure 10: Listen and Accept queue size during a connection
flood attack.

120 200200 300 400 480
Time (sec)

0

20

40

60

80

100

Es
ta

bl
ish

ed
 c

on
ne

ct
io

ns
 ra

te With challenges

120 200200 300 400 480
Time (sec)

200

400

600
With cookies

Figure 11: Effective attack rate for all attackers during a con-
nection flood attack.

In the first scenario, we start a distributed SYN flood attack.

Without protection, the SYN flood fills the listen queue with half-

open TCP connections leading the server to drop new incoming

connections. We measure the throughput at a client and the server

for three settings: (1) no protection (control settings), (2) TCP SYN

cookies, and (3) TCP client puzzles. Figure 7 shows the throughput

measured during the experiment. The attack duration, shown by the

shaded region, is initiated at t = 120 and concludes at t = 480. The

throughput’s behavior for both the server and client are consistent;

we therefore restrict our analysis to the server’s case. For the control

setting, the server’s throughput drops to zero as soon as the attack

starts and returns to full capacity 30 seconds after the attack ends.

On the other hand, SYN cookies are effective at rendering such an

attack ineffective and ensuring a constant throughput at the server

throughput the attack. By storing partial state of the connection

in the TCP sequence number instead of in the listen queue, SYN

cookies provide protection against this type of attack. Finally, when

low difficulty puzzles are enabled, (k,m) = (1, 8), the throughput is
unaffected during the attack. Similarly to SYN cookies, the puzzles

enable to reconstruction of a connection’s state with no use of

the listen queue. However, when using the Nash equilibrium

difficulty, (k,m) = (2, 17), the throughput is reduced to 50 Mbps

during the attack. The throughput reduction is due to the Nash

equilibrium strategy being more aggressive than the easier setting;

in this scenario easy puzzles were enough to alleviate the attack as

the botnet is not completing the connection, this would not be the

case for the next scenario.

In the second scenario, we use the attacker nodes to launch a

distributed connection flood attack. We measure the same metrics

as the first scenario for three cases: no protection, SYN cookies, and

TCP puzzles at Nash difficulties. The TCP puzzles at difficulty of 8

bits were ineffective at protecting the server’s state. For readability,

we elected not to show these results in this plot since we will revisit

various difficulty settings in Section 6.3.

Figure 8 shows the throughput of a client and the server during

the experiment. Moreover, we use the sparkline in the client plot

to mark when the server sends a SYN-ACK packet with a challenge

(bright tick) or without a challenge (dark tick). The results show

that SYN cookies are ineffective during a connection flood, the

server’s throughput drops to 0 as is the case when no protection

is in place. In both those cases, the server needs 30 seconds to

detect the end of the flood and fully recover. On the other hand,

TCP puzzles at Nash difficulties provide tolerance against the flood

attack. The throughput of the client and the server is about 40%

of their respective nominal rates. It is interesting to note that the

throughput periodically spikes during the attack phase. This occurs

because not all the requests of the clients require a puzzle, as shown

by the dark ticks in the sparkline during the attack phase. The

performance improvement is due to the opportunistic nature of the

protection controller; that is, when the listen queue is not full,

a connection request is answered without a challenge allowing a

host to take advantage of the resource instantly. We also note that

easy puzzles were unable to affect the attacker bots’ connectivity

rates and thus provided no better protection than SYN cookies.

Additionally, we measured the impact of the TCP challenges

on the CPU utilization of the client, server, and attacker machines.

Figure 9 shows that the impact on the server of generating and

verifying the puzzles is negligible, the server’s CPU utilization

stayed below 5% and did not exceed its nominal (under regular load)

value. In accordance with the nature of computational puzzles, the

CPU utilization at the clients’ machines increased during the attack,

nevertheless still remaining well under 20%, with an average of 10%.

The attacker machines, on the other hand, witnessed a spike in CPU

utilization during the period of the attack, reaching a maximum of

60%. These results highlight that our equilibrium difficulty setting

achieved our desired goals of (1) putting minimal overhead on

the server to generate and verify puzzles, (2) inducing tolerable

nuisance to the clients, and (3) effectively rate limit the attackers’

established requests rate and increase their computational burden.

In fact, the sudden increase in the CPU utilization at the botnet

machines can serve as an alert to the owners of these machines to

the possible presence of malware.

9

We further study the impact of the TCP cookies and puzzles on

the server’s internal listen and accept queues during a connec-
tion flood attack. Figure 10 illustrates that when SYN cookies are

the only defensive mechanism in place, both queues are fully satu-

rated which explains the zero throughput observed by the benign

clients. On the other hand, with TCP challenges in place, the accept
queue is almost always empty, which is a direct result of the puzzles

being able to rate limit every user, whether benign or malicious,

to an average of 2 requests per second. Additionally, the listen
queue, although mostly saturated, shows frequent openings that

are consistent with the opportunistic nature of our implementation

as highlighted by the sparklines in Figure 7.

Finally, we show that TCP puzzles (at Nash difficulty) throttle

the attacker’s rate of established connections. We measured the

effective completed connections rate of all attackers as seen by

the server during the connection flood. The measurements, shown

in Figure 11, reveal that the attack rate is not affected by TCP

cookies, achieving an average rate of 225 connections per second

(cps), whereas TCP puzzles severely limit the attackers’ rate at an

average of 4 cps, a reduction by a factor of 37.

6.3 Experiment 3: Nash equilibrium strategy
In this experiment, we show that the Nash equilibrium difficulty pro-

vides the optimal balance between the clients’ throughput and the

attack tolerance during an attack; the Nash equilibrium is selected

based on the capabilities of the clients and the defense requirements

of the server. We study the impact on the clients’ throughput and

the attacker’s abilities of the Nash equilibrium strategy compared

to other difficulties during a connection flood attack.

Figure 12 shows the average and standard deviation of the through-

put of a client during attack. In general, for any k, ifm < 12, the

ease of solving the challenges does not affect the attackers’ rate,

thus causing a denial of service. The Nash equilibrium strategy

results in the most stable throughput with an average of 3.90 Mbps

and low variability. Even though some of the other settings have

a higher average throughput, the throughput is highly unstable

reaching zero at many times. Additionally, we note that when the

difficulty is set to (k = 2,m = 16), the throughput achieves a slightly
better average with comparable variability. However, the Nash dif-

ficulty setting provides the rate that balances the acceptable cost

a client is willing to pay (in terms of increased connection time

and thus decreased throughput), and the server’s ability to tolerate

state exhaustion attacks by throttling the attackers’ rates. In fact, at

the Nash difficulty, the puzzles mechanism reduced the attackers’

average SYN sending rate from 2250 pps for (k = 2,m = 16) to 1668
pps, and the average connection establishment rate from 30 cps to

22 cps.

6.4 Experiment 4: Botnet effectiveness
In the fourth experiment, we show that TCP puzzles increase the

server’s tolerance to a botnet and require attackers to increase their

botnet’s size to deny service. We vary the botnet’s size and attack

rate and measure the cumulative attack rate as seen by the botnet

(referred to as the measured attacker rate) and the server (referred

to as the connection completion rate). The connection completion

rate is the effective attack rate that actually impacts the server. In

the first scenario, we set the number of nodes in the botnet to 5

and vary the sending rate of each node between 100 and 1000 pps.

Figure 13(a) shows the measured attack rate and Figure 13(b) shows

the rate of completed connections. The results show that the TCP

puzzles are capable of rate limiting the effective attack rate. As the

per node attack rate increases, the cumulative attack rate increases

reaching a peak of 1200 pps. However, the effective attack rate is

limited to 11 cps regardless of the individual attack rate.

In the second scenario, we vary the number of machines in

the botnet while setting the cumulative attack rate to 5, 000 pps;

each machine’s rate is set at 5, 000/(size of botnet). Figures 14(a)
and 14(b) show the measured attack rate and the effective attack

rate as the number of machines are varied, respectively. The results

show that attackers have to increase the size of their botnets to

increase their effective attack rates. As more machines are added,

the measured attack rate increases to peak at 2250 pps. The effective

attack rate, although it linearly increases with the increase in the

number of attack machines, it only peaks at 25 cps — one hundredth

the measured attack rate. As opposed to the near-constant rate in

the first scenario, the effective attack rate increased in this scenario

since more machines have been enlisted in the botnet. However, this

increase does not reflect the increase in resources being committed

to the botnet. At the current rate of increase, a botnet has to commit

500 machines to reach an effective attack rate of 5000 cps.

In conclusion, for the attacker to increase the effective attack rate,

it cannot increase the individual rates, it has to increase the number

of machines in the botnet; TCP puzzles at the Nash equilibrium

difficulty significantly increases the cost of a state exhaustion attack.

6.5 Experiment 5: Adoption of TCP puzzles
In this experiment, we show that a client solving the TCP puzzles is

almost always able to connect to the server regardless of whether

the attacker elects to solve or ignore the puzzles or select a com-

bination thereof. On the other hand, a client that does not solve

puzzles gets erratic service when the attacker is solving the puzzles

and almost no service when the attacker floods the server without

solving any puzzles. In this experiment, we use machines that have

not been patched to support TCP puzzles; we test all four scenarios

when (1) both the attacker and client do not solve puzzles (NA,NC),

(2) the attacker solves puzzles while the clients do not solve puz-

zles (SA,NC), (3) the clients solve puzzles with the attacker solving

the puzzles, and (4) the clients solve puzzles with the attacker not

solving the puzzles. We group scenarios (3) and (4) together and

label them as (*A, SC). Figure 15 shows the percentage of completed

connections for all the proposed scenarios. We observe that a client

solving puzzles is not denied service regardless of the attacker’s

type; this happens because the attacker, being rate limited when

solving puzzles and having its requests ignored when not solving

challenge request, is not able to fill the accept queue of the server.

On the contrary, a non-solving client faced with a solving attacker

experiences a highly variable percentage of completed connections,

reaching 0 at some instances. This happens due to the opportunistic

nature of the TCP puzzles controller (as observed in Experiment 2);

the rate limiting impact on the attacker machines can empty slots

in the server’s queues thus providing openings for the non-solving

10

m=12 m=15 m=16 m=17 m=18 m=20
k=1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Th
ro

ug
hp

ut
(M

bp
s)

m=12 m=15 m=16 m=17 m=18 m=20
k=2

m=12 m=15 m=16 m=17 m=18 m=20
k=3

m=12 m=15 m=16 m=17 m=18 m=20
k=4

Figure 12: Box plot of the client throughput for different puzzle difficulties.

200 400 600 800 1000
Attack rate per node (pps)

200

400

600

800

1000

1200

1400

M
ea

su
re

d
at

ta
ck

 ra
te

(a) Connections attempted

200 400 600 800 1000
Attack rate per node (pps)

0

2

4

6

8

10

12

14

Co
m

pl
et

io
n

ra
te

(b) Connections completed

Figure 13: Impact of the puzzles on the attack as the flooding
rate is increased.

2 4 6 8 10 12 14
Number of attacker nodes

750

1000

1250

1500

1750

2000

2250

2500

2750

M
ea

su
re

d
at

ta
ck

 ra
te

(a) Connections attempted

2 4 6 8 10 12 14
Number of attacker nodes

0

5

10

15

20

25

30

Co
m

pl
et

io
n

ra
te

(b) Connections completed

Figure 14: Impact of the puzzles on the attack as the number
of participating machines is increased.

client to establish connections. However, when faced with an at-

tacker that does not solve the challenges, the non-solving clients are

denied service. This happens because the attacker’s vast resources

beat the clients’ requests for the resources freed by the TCP puz-

zles controller. We note that the service promises provided by our

puzzles implementation to non-compliant clients are similar, and

sometimes better, than those provided by network capabilities [41],

while we almost always provide service for those who comply.

6.6 Experiment 6: Impact on IoT devices
In the last experiment, we explore the impact of the client puzzles

on the capabilities of IoT devices. We show that the flooding impact

of IoT devices can be greatly reduced by virtue of the support for

TCP client puzzles. Table 1 shows the average hashing rate and the

150 200 250 300 350 400 450
Time (seconds)

0

20

40

60

80

100

%
 o

f c
on

ne
ct

io
ns

 e
st

ab
lis

he
d

(NA, NC) (SA, NC) (*A, SC)

Figure 15: Percentage of established connections when TCP
puzzles adoption is not complete – (*A, SC) captures both
(NA, SC) and (SA, SC).

Table 1: Performance profile of embedded devices.

Device Average hashing rate Hashes performed in 400 ms

D1 49,617 19,901

D2 68,960 26,563

D3 70,009 27,987

D4 74,201 29,732

number of hashes performed in the 400ms interval, of four Rasp-
berry Pi devices: D1 equipped with a 700MHz ARM 11 processor,

D2 equipped with a 1GHz ARM 11 processor, D3 equipped with a

quad-core 1.2 GHz ARM Cortex-A53 processor, and D4 equipped

with a quad Core 1.2GHz Broadcom BCM2837 processor. The per-

formance profiles show that, while the computational capabilities

of these processors still enable them the opportunity to connect to

a server that is deploying client puzzles, they greatly hinder their

ability to effectively participate in a distributed TCP connection

flood attack. Such devices might still be able to send SYN request

packets, however, their ability to launch a flood of connections

is limited. This subsequently implies that an attacker recruiting

IoT devices as part of her bot army needs to employ much more

resources to launch an effective attack. This achieves our goal of

increasing the cost of conducting state exhaustion attacks.

11

7 LIMITATIONS AND DISCUSSION
In this section, we discuss the challenges facing the adoption of

TCP client puzzles and provide an analysis of their limitations.

Software adoption As showcased by our experiments, there is a

great benefit for servers to adopt client puzzles as a mechanism for

tolerance of state exhaustion attacks. By rate limiting users and pro-

tecting the server’s internal queues, client puzzles present service

providers with a chance to provide continuous service during state

exhaustion attacks. Our implementation presents the following

incentives for ease of adoption. First, a running server can easily

support client puzzles by simply patching its kernel. Second, our

implementation does not introduce any changes to the normal op-

eration of the server and only sends challenges when the queues

overflow, the TCP stack remains intact otherwise. Finally, our patch

is compatible with earlier versions of the Linux kernel as long as it

has support for the cryptographic operations.

While servers are incentivized to adopt TCP puzzles by the in-

creased tolerance of attacks, clients, on the other hand, benefit from

the promise of service even during attacks. As shown in experiment

5, users that enable support for client puzzles are always able to con-

nect to the server. The server can protect its queues from attackers

that do not solve challenges while rate-limiting those that do, thus

freeing up resources for the legitimate clients. For the users that

choose not to adopt the challenges, they still receive full service

under regular load. However, when under attack, those users will

be in contention with the non-solving attackers for the spots that

free up in the queues by the server’s opportunistic challenges con-

troller. This scenario is no worse than the case when no challenges

are applied. Note that our theoretical formulation asserts the same

outcome, a user that does not adopt TCP challenges is similar to

one that values the server’s services atw = 0. Such a user prohibits

the server from providing it with protections since it cannot assign

an appropriate puzzle difficulty. We believe that the opportunistic

challenges controller offers non-cooperating users service promises

similar to those provided by network capabilities [41], in which

a small portion of the channel is shared between non-compatible

users and attackers. Finally, we note that users can manually elect

to disable the use of puzzles through the kernel’s sysctl interface.

Solution floodsWhen implementing client puzzles as a scheme for

resisting state exhaustion attacks, the server must commit computa-

tional resources to generate and verify puzzles for every incoming

connection request. An attacker thus might attempt to overwhelm

the server with verification tasks by sending a barrage of bogus so-

lutions for which the server must perform cryptographic operations

to verify their validity. We, however, argue that (1) the overhead

of generating and verifying puzzles is negligible and (2) such an

attack requires the attacker to commit vast resources that render it

infeasible at low costs (thus alleviating the cost imbalance between

the attacker and the defender).

Our game-theoretic formulation takes into consideration the

server’s computational load and the number of cryptographic oper-

ations that it must performwhen verifying a puzzle solution; it aims

to maximize the clients’ load while minimizing the server’s load.

This is confirmed by the results discussed in Section 6.2 and show-

cased in Figure 9. The computational effort employed by the server

to generate and verify puzzles is negligible, with CPU utilization

remaining below 5% throughout the entirety of the attack.

Additionally, the server needs only to perform one hashing oper-

ation to generate a challenge, and an average of (1+ k
2
) hashing oper-

ations when verifying a solution. We argue that a well-provisioned

server can handle such a load while still being able to handle ser-

vicing the legitimate clients. For example, the server used in our

experiments can perform 10.8 million hash operations per second.

Thus an attacker aiming to overwhelm such a server would need to

send at least 5,400,000 packets per second, each of which contains

at least 60 bytes for IP and TCP headers. Therefore, attacking a

web service that employs server replication and load balancing

requires the attacker to employ additional resources coming at a

much higher cost. We acknowledge that no solution can completely

eliminate the possibility of a successful attack. However, we believe

that our results show the client puzzles can significantly increase

the cost of launching such attacks, thus restoring some balance to

the uneven attack-defense play-field. We also note that, to mitigate

such attacks, a server that employs client puzzles can benefit from

deploying one or more proxy servers that solely handle the gener-

ation and validation of puzzles, and then delegate the application

processing of established connections to backend servers [39].

Replay attacks Since the server does not retain state about an

incoming connection before receiving a valid challenge solution,

an attacker might capture legitimate clients’ solutions and replay

them to overflow the server’s accept queue. We note however that

for a replayed solution to be validated, the attacker must retain the

packet’s parameters (IP addresses, port numbers, and timestamps).

Therefore a replayed solution can only be used to occupy one slot

in the server’s queue at a time. Additionally, our implementation

ensures that puzzles expire after a set timeout interval. The time-

out interval limits an attacker’s ability to carry on a replay flood

effectively, and thus our implementation is resistant to such attacks.

Fairness and power considerations Our model and implementa-

tion of TCP client puzzles use the same difficulty level for all of

the users, regardless of whether they are legitimate clients or mali-

cious attackers. We were motivated by two important factors when

making this design choice: (1) the requirement to remain stateless

until a solution is verified and (2) the difficulty of filtering malicious

IP addresses when under attack. This nevertheless raises fairness

concerns since the puzzles mechanism is nondiscriminatory and

treats every request as a potential malicious request. We note how-

ever, that this behavior is only experienced when a victim server

is under attack and not during regular operation. Additionally, we

believe that our work on client puzzles, as posited in [16], can be a

catalyst for future exploration of fairness schemes, such as Puzzle
Fair Queuing. We plan to address this issue in our future work.

Furthermore, we do not currently address the important chal-

lenge arising from the presence of a non-uniform mix between

power-limited (e.g., mobile phones, IoT devices) and power-endowed

(e.g., GPU-enabled desktops) benign devices. Althoughwav in our

model attempts to capture the power-mix of clients at design time,

it does not keep track of clients joining and leaving the system. In

fact, this non-uniformity of CPU power is one of the main chal-

lenges facing Bitcoin mining, with mining pools controlling 27% of

the market hashing power. A possible solution would be to switch

12

to memory-based proof-of-work schemes [3] that promise more

uniform solution requirements. Another possibility would be to

adapt the difficulty of the sent puzzles based on the behavior of the

observed traffic at the server, thus forming a closed control loop.

We plan to investigate such methods in our future work.

8 CONCLUSION
In this paper, we presented a theoretical formulation and imple-

mentation of client puzzles as means for providing tolerance to

state exhaustion attacks. We addressed the challenge of selecting

puzzle difficulties by modeling the problem as a Stackelberg game

where the server is the leader and the clients are the followers. We

obtained the equilibrium solution that illustrates a tradeoff between

the clients’ valuation of the requested services and the server’s ser-

vice capacity. We then tackled the lack of puzzle implementations

by providing a Linux kernel patch and evaluating its performance

on the DETER testbed. Our results show that client puzzles are an

effective mechanism that can be added to our arsenal of defenses to

increase the resilience to multi-vectored DDoS attacks and restore

the balance to the attack-defense play field.

REFERENCES
[1] 2017. ab - Apache HTTP server benchmarking tool. (2017). https://httpd.apache.

org/docs/2.4/programs/ab.html

[2] 2017. Global DDoS Thread Landscape: Q4 2017. (2017). https://www.incapsula.

com/ddos-report/ddos-report-q4-2017.html

[3] Martin Abadi, Mike Burrows, Mark Manasse, and Ted Wobber. 2005. Moderately

Hard, Memory-bound Functions. ACM Trans. Internet Technol. 5, 2, 299–327.
https://doi.org/10.1145/1064340.1064341

[4] Philippe Alcoy, Steinthor Bjarnson, Paul Bowen, C.F. Chui, Kirill Kasavchenko,

and Gary Sockrider. 2017. NetScout Arbor’s 13th Annual Worldwide Infrastruc-

ture Security Report. (2017). https://pages.arbornetworks.com/rs/082-KNA-087/

images/13th_Worldwide_Infrastructure_Security_Report.pdf

[5] Anna-Senpai. 2016. World’s Largest Net:Mirai Botnet, Client, Echo Loader, CNC

source code release. (2016). https://hackforums.net/showthread.php?tid=5420472

[6] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,

Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis

Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,

Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding the

Mirai Botnet. In 26th USENIX Security Symposium (USENIX Security 17). USENIX
Association, Vancouver, BC, 1093–1110. https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/antonakakis

[7] T. Başar and R. Srikant. 2002. Revenue-maximizing pricing and capacity expan-

sion in a many-users regime. In Proceedings.Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies, Vol. 1. 294–301.

[8] Terry Benzel, Robert Braden, Dongho Kim, Clifford Neuman, Anthony Joseph,

Keith Sklower, Ron Ostrenga, and Stephen Schwab. 2007. Design, Deployment,

and Use of the DETER Testbed. In Proceedings of the DETER CommunityWorkshop
on Cyber Security Experimentation and Test (DETER 2007). USENIX Association,

Berkeley, CA, USA, 1–1.

[9] D.J. Bernstein. 1997. SYN cookies. (1997). https://cr.yp.to/syncookies.html

[10] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. 2015.

SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies. In

2015 IEEE Symposium on Security and Privacy. 104–121.
[11] Liqun Chen, PaulMorrissey, Nigel P. Smart, and BogdanWarinschi. 2009. Security

Notions and Generic Constructions for Client Puzzles. In Advances in Cryptology
– ASIACRYPT 2009, Mitsuru Matsui (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 505–523.

[12] Drew Dean and Adam Stubblefield. 2001. Using Client Puzzles to Protect TLS..

In USENIX Security Symposium, Vol. 42.

[13] Cynthia Dwork and Moni Naor. 1993. Pricing via Processing or Combatting Junk

Mail. In Advances in Cryptology — CRYPTO’ 92: 12th Annual International Cryp-
tology Conference Santa Barbara, California, USA August 16–20, 1992 Proceedings,
Ernest F. Brickell (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 139–147.

[14] W. Eddy. 2007. TCP SYN Flooding Attacks and Common Mitigations. RFC 4987.

https://tools.ietf.org/pdf/rfc4987.pdf

[15] W. Feng, E. Kaiser, and A. Luu. 2005. Design and implementation of network

puzzles. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer
and Communications Societies., Vol. 4. 2372–2382 vol. 4.

[16] Wu-chang Feng. 2003. The Case for TCP/IP Puzzles. In Proceedings of the ACM
SIGCOMM Workshop on Future Directions in Network Architecture (FDNA ’03).
ACM, New York, NY, USA, 322–327. https://doi.org/10.1145/944759.944771

[17] R. Fielding and J. Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. RFC 7230. https://tools.ietf.org/html/rfc7230

[18] Matthew K Franklin and Dahlia Malkhi. 1997. Auditable metering with light-

weight security. In International Conference on Financial Cryptography. Springer,
151–160.

[19] Bogdan Groza and Bogdan Warinschi. 2014. Cryptographic puzzles and DoS

resilience, revisited. Designs, Codes and Cryptography 73, 1, 177–207. https:

//doi.org/10.1007/s10623-013-9816-5

[20] Scott Hilton. 2016. Dyn Analysis Summary of Friday October 21 Attack. (2016).

http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

[21] A. Juels and J. Brainard. 1999. Client Puzzles: A Cryptogrpahic countermeasure

against connection depletion attacks. In Proceedings of the 1999 Networks and
Distributed System Security symposium (NDSS).

[22] Ben Laurie and Richard Clayton. 2004. Proof-of-work proves not to work; version

0.2. InWorkshop on Economics and Information, Security.
[23] Jonathan Lemon. 2002. Resisting SYN Flood DoS Attacks with a SYN Cache. In

Proceedings of the 2002 BSD Conference (BSDC’02). USENIX Association, Berkeley,

CA, USA, 10–10.

[24] Xin Liu, Xiaowei Yang, and Yanbin Lu. 2008. To Filter or to Authorize: Network-

layer DoS Defense Against Multimillion-node Botnets. In Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication (SIGCOMM ’08). ACM, New

York, NY, USA, 195–206.

[25] Xin Liu, Xiaowei Yang, and Yong Xia. 2010. NetFence: Preventing Internet Denial

of Service from Inside out. In Proceedings of the ACM SIGCOMM 2010 Conference
(SIGCOMM ’10). ACM, New York, NY, USA, 255–266.

[26] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern Paxson, and

Scott Shenker. 2002. Controlling High Bandwidth Aggregates in the Network.

SIGCOMM Comput. Commun. Rev. 32, 3 (July 2002), 62–73.

[27] Timothy J. McNevin, Jung-Min Park, and Randolph Marchany. 2004. pTCP: A
client puzzle protocol for defending against resource exhaustion denial of service
attacks. Technical Report TR-ECE-04-10. Department of Electrical and Computer

Engineering, Virginia Tech.

[28] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[29] Jakob Nielsen. 1993. Usability Engineering (1 ed.). Morgan Kaufmann.

[30] E. Nygren, S. Erb, A. Biryukov, D. Khovratovich, and A. Juels. 2016. TLS Client
Puzzles Extension. Internet-Draft. IETF Secretariat.

[31] Bryan Parno, Dan Wendlandt, Elaine Shi, Adrian Perrig, Bruce Maggs, and Yih-

ChunHu. 2007. Portcullis: Protecting Connection Setup fromDenial-of-capability

Attacks. In Proceedings of the 2007 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications (SIGCOMM ’07). ACM,

New York, NY, USA, 289–300.

[32] Jon Postel. 1981. Transmission Control Protocol. RFC 793. https://tools.ietf.org/

html/rfc793

[33] H. Shen and T. Başar. 2007. Incentive-Based Pricing for Network Games with

Complete and Incomplete Information. In Advances in Dynamic Game The-
ory: Numerical Methods, Algorithms, and Applications to Ecology and Economics.
Birkhäuser Boston, Boston, MA, 431–458.

[34] H. Shen and T. Basar. 2007. Optimal Nonlinear Pricing for a Monopolistic

Network Service Provider with Complete and Incomplete Information. In IEEE
Journal on Selected Areas in Communications, Vol. 25. 1216–1223.

[35] C.L. Sheng. 1984. A general utility function for decision-making. InMathematical
Modelling, Vol. 5. 265 – 274.

[36] Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy, Colin Boyd, and Juan

Gonzalez Nieto. 2011. Stronger Difficulty Notions for Client Puzzles and Denial-

of-Service-Resistant Protocols. In Topics in Cryptology – CT-RSA 2011, Aggelos
Kiayias (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 284–301.

[37] Xiaofeng Wang and M. K. Reiter. 2003. Defending against denial-of-service

attacks with puzzle auctions. In 2003 Symposium on Security and Privacy, 2003.
78–92. https://doi.org/10.1109/SECPRI.2003.1199329

[38] XiaoFeng Wang and Michael K. Reiter. 2004. Mitigating Bandwidth-exhaustion

Attacks Using Congestion Puzzles. In Proceedings of the 11th ACM Conference on
Computer and Communications Security (CCS ’04). ACM, New York, NY, USA,

257–267. https://doi.org/10.1145/1030083.1030118

[39] Brent Waters, Ari Juels, J. Alex Halderman, and Edward W. Felten. 2004. New

Client Puzzle Outsourcing Techniques for DoS Resistance. In Proceedings of the
11th ACM Conference on Computer and Communications Security (CCS ’04). ACM,

New York, NY, USA, 246–256.

[40] Kevin Whalen. 2017. The Economics of DDoS Attacks. (2017). https://www.

arbornetworks.com/blog/insight/economics-ddos-attacks/

[41] Xiaowei Yang, David Wetherall, and Thomas Anderson. 2005. A DoS-limiting

Network Architecture. In Proceedings of the 2005 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (SIGCOMM
’05). ACM, New York, NY, USA, 241–252. https://doi.org/10.1145/1080091.1080120

13

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.incapsula.com/ddos-report/ddos-report-q4-2017.html
https://www.incapsula.com/ddos-report/ddos-report-q4-2017.html
https://doi.org/10.1145/1064340.1064341
https://pages.arbornetworks.com/rs/082-KNA-087/images/13th_Worldwide_Infrastructure_Security_Report.pdf
https://pages.arbornetworks.com/rs/082-KNA-087/images/13th_Worldwide_Infrastructure_Security_Report.pdf
https://hackforums.net/showthread.php?tid=5420472
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://cr.yp.to/syncookies.html
https://tools.ietf.org/pdf/rfc4987.pdf
https://doi.org/10.1145/944759.944771
https://tools.ietf.org/html/rfc7230
https://doi.org/10.1007/s10623-013-9816-5
https://doi.org/10.1007/s10623-013-9816-5
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://doi.org/10.1109/SECPRI.2003.1199329
https://doi.org/10.1145/1030083.1030118
https://www.arbornetworks.com/blog/insight/economics-ddos-attacks/
https://www.arbornetworks.com/blog/insight/economics-ddos-attacks/
https://doi.org/10.1145/1080091.1080120

[42] Xiaowei Yang, David Wetherall, and Thomas Anderson. 2008. TVA: A DoS-

limiting Network Architecture. IEEE/ACM Trans. Netw. 16, 6, 1267–1280.

A PROOF OF THEOREM 1
In order to analytically solve for the equilibrium solution of the

game, we follow an approach similar to that in [7]. We start by

noting that the Nash Equilibrium solution of the users’ game is not

affected if we add the quantity∑
j,i

(
w j log(1 + x j) − k × 2

m−1x j
)

to each users’ utility function. Therefore we can now build a strate-

gically equivalent game where each user’s utility function is

H (x1, . . . ,xN ,p) =
N∑
i=1

wi log(1 + xi) − k × 2
m−1x̄ − 1

µ − x̄
(7)

Now looking at the Hessian matrix of H we get

Hii =
∂2H

∂x2

i
= − wi

(1 + xi)2
− 2

(µ − x̄)2
< 0, ∀i

Hi j =
∂2H

∂xix j
= − 2

(µ − x̄)3
< 0, ∀i, j, i , j

Therefore H is negative-definite and thus H is strictly concave for

0 ≤ x̄ < µ. Additionally, sinceH → −∞ as x̄ → µ, we can conclude

the that optimization problem

max

xi ≥0:∀i, x̄<µH (x1,x2, . . . ,xN ,p)

admits a unique solution x∗ =
{
x∗

1
, . . . ,x∗N

}
in the interval 0 ≤ x̄ <

µ which corresponds to the Nash Equilibrium strategies to the users’

game as defined in Equation (4). We obtain the solution strategies

by solving the first order condition of H where for i ∈ {1, . . . ,N }
∂H

∂xi

(
x∗

1
, . . . ,x∗N ,p

)
= 0

which translates to

wi
1 + x∗i

− k × 2
m−1 − 1

µ − x̄∗
= 0, ∀i (8)

Let yi = 1+xi , ȳ =
∑N
i=1

yi = N + x̄ , and w̄ =
∑N
i=1

w j , from which

we obtain

wi
yi
=
w j

yj
, ∀i, j ∈ {1, . . . ,N }

or equivalently

yi =
wi
w j

yj , ∀i, j ∈ {1, . . . ,N }

We can then rewrite ȳ as

ȳ =
N∑
i=1

yi =
N∑
i=1

wi
w j

yj =
w̄

w j
yj

and thus we can express (8) in terms of ȳ as

L̃(ȳ) = w̄

ȳ
− k × 2

m−1 − 1

(µ + N − ȳ)2
= 0 (9)

We can thus turn our attention to solving Equation (9) for N ≤ ȳ <

µ + N . Since
∂L̃
∂ȳ = − w̄

ȳ2
− 2

(µ+N−ȳ)2 < 0, L̃ is strictly decreasing.

Additionally, L̃(ȳ) → −∞ as ȳ → µ +N . We therefore need L̃(N) to

be non-negative so that L̃(ȳ) would admit a solution in the interval

N ≤ ȳ < µ + N , which translates to

L̃(N) = w̄

N
− k × 2

m−1 − 1

µ2
> 0

or equivalently

k × 2
m−1 <

w̄

N
− 1

µ2
:= r̂ (10)

We can see r̂ as the maximum possible difficulty that the service

provider can select while guaranteeing that a solution for the clients’

game exists. We also notice that if the provider had infinite resource,

i.e., µ → ∞, r̂ → w̄
N which suggests that a client should not

be charged a price higher than the average user valuation of the

provider’s services.

Furthermore, it is beneficial for the service provider to ensure

that all clients participate in the game, i.e., that xi > 0 for all

i ∈ {1, 2, . . . ,N }. This therefore translates to the conditions on ȳ

ȳ >
w̄

wi
∀i (11)

Now let ȳ(k,m) be a solution to Equation (9) that satisfies condi-

tion (11) and where (k,m) satisfy condition (10), and let x̄(k,m) be
the corresponding value of x̄ . We turn to the provider’s problem of

finding the optimal pricing p∗ = (k∗,m∗) that maximizes

I (p) :=

(
k × 2

m−1 − 2 − k

2

)
x̄(k,m) (12)

In order to obtain an analytical solution to the optimization prob-

lem in Equation (12) we make use of the following approximation.

We solve for the pricing p̃(˜k,m̃) that maximizes

Ĩ (p) :=
(
k × 2

m−1

)
x̄(k,m) (13)

Lemma 1. |I (p∗) − Ĩ (p̃)| < c for some constant c > 0, where p∗

and p̃ are the solutions that maximize I and Ĩ , respectively.

Proof. Let p∗ = (k∗,m∗) and p̃ = (˜k,m̃) be the prices that

maximize I (p) and Ĩ (p), respectively. We therefore have that

˜k × 2
m̃−1x̄(˜k,m̃) ≥ k × 2

m−1x̄(k,m), ∀k,m
Let p′ = (k ′,m′) be a price with minimum 0 < k ′ ≤ ˜k such that

k ′ × 2
m′−1 = ˜k × 2

m̃−1
and I (k ′,m′) ≥ I (˜k,m̃). We can therefore

write

I (p′) ≥ I (k,m) − (k
′

2

+ 2)x̄(k ′,m′), ∀k,m
and since I (p∗) ≥ I (p) ∀p we can therefore conclude that

|I (p∗) − I (p′)| ≤ (k
′

2

+ 2)x̄(k ′,m′) <
(
(k

′

2

+ 2)µ
)

:= c

and since x̄ only depends on k × 2
m−1

and not on the individual

values of k andm, p′ also maximizes Equation (13) and thus solving

for p′ brings us within a constant c of p∗, the maximum of I . □

We can now proceed with finding a solution for Equation (13)

following the approach presented in [7]. By using the one-to-one

correspondance between k × 2
m−1

and ȳ (and thus x̄) presented in

Equation (9), we can substitute ȳ in (13) and then compute p∗ using
14

the solution to the obtained equation. We then write the equivalent

problem as finding ȳ∗ such that

ȳ∗ = arg max

N <ȳ<N+µ

(
w̄

ȳ
− 1

(µ + N − ȳ)2

)
(ȳ − N) (14)

We defineG(ȳ) :=
(
w̄
ȳ − 1

(µ+N−ȳ)2
)
(ȳ −N). It is easy to see that

∂2G
∂ȳ2
< 0 and thusG(ȳ) is strictly concave. Additionally,G(N+µ) →

−∞, we can thus conclude that G(ȳ) admits a unique maximum

in the open interval (N ,N + µ). We can then solve the first order

condition

∂G(ȳ)
∂ȳ

:=
w̄N

ȳ2
− µ + ȳ − N

(µ + N − ȳ)3
= 0 (15)

Obtaining a closed form solution for ȳ∗ is not possible for finite
N . Therefore we solve Equation (15) asymptotically (i.e., asN → ∞)

as proposed in [7]. For that, we make the following assumptions.

(1) We assume that the average user preferencewav (N) = w̄
N has a

well defined limitwav asN → ∞. (2)We assume that as the number

of users grows larger, the service provider can always service a

fraction of its users, even if that fraction is small. In other words,

we assume that lim

N→∞
µ
N = α for some α > 0. For convenience,

we rewrite Equation (15) in terms of xav (N) = x̄
N andwav (N) as

N → ∞ as

wav

(1 + xav (N))2
=

α + xav (N)
(α − xav (N))3N 2

(16)

Equation (16) possesses a solution for xav (N) iff,

lim

N→∞
(α − xav (N))3 N 2 = γ

for some γ > 0. We thus substitute back in Equation (9) and obtain

the solution

k∗ × 2
m∗−1 ∼ wav

α + 1

+
2α − 1

γ
2

3 N
2

3

(17)

where f ∼ д denotes the fact that lim

N→∞
f
д = 1.

Since we are considering the asymptotic solution, we restrict

our attention to the first order term of the solution in Equation (17)

and thus obtain our desired form

k∗ × 2
m∗−1 =

wav
α + 1

(18)

In fact, as shown in [7], Equation (18) corresponds to the solution

of the same problem when ignoring the service delay at the server.

Since SYN and connection flood attacks target the TCP protocol and

not the application layer service, it is convenient for the purposes

of this paper to only consider the first order term of Equation (17),

thus completing the proof. ■

A EXPERIMENT TOPOLOGY AND MACHINES
Figure 16 shows the topology of our experiment setup. All the

hosts are physical machines. The following is a list of the hardware

specifications of the machines used in the setup. The nomenclature

pcxxx and bpcxxx refers to the specific hardware models provided

by the DETER testbed. Our client and attacker machines use a

combination of those models while our server is deployed on a

more capable HP server having dual Intel Xeon hex-core processors

Figure 16: Scenario Topology

running at 2.2 Ghz, 24 GB of RAM, 1 TB of storage, and a 10-Gigabit

network interface.

pc3000 and bpc3000 have the following features:

• Dell PowerEdge 1850 Chassis.

• Dual 3Ghz Intel Xeon processors.

• 2 GB of RAM

• One 36Gb 15k RPM SCSI drive.

• 4 Intel Gigabit experimental network ports.

• 1 Intel Gigabit experimental network port.

The pc2133 and bpc2133 machines have the following features:

• Dell PowerEdge 860 Chasis

• One Intel(R) Xeon(R) CPU X3210 quad core processor run-

ning at 2.13 Ghz

• 4GB of RAM

• One 250Gb SATA Disk Drive

• One Dual port PCI-X Intel Gigabit Ethernet card for the

control network.

• One Quad port PCIe Intel Gigabit Ethernet card for experi-

mental network.

High Density SuperMicro MicroCloud Chassis that fits 8 nodes

in 3u of rack space have the following features:

• One Intel(R) Xeon(R) E3-1260L quad-core processor run-

ning at 2.4 Ghz Intel VT-x and VT-d support

• 16GB of RAM

• One 250Gb SATA Western Digital RE4 Disk Drive

• 5 experimental interfaces

15

• One Dual port PCIe Intel Gigabit Ethernet card for the

control network and an experimental port

• One Quad port PCIe Intel Gigabit Ethernet card for experi-

mental network

HP Proliant DL360 G8 Server have the following features:

• Dual Intel(R) Xeon(R) hexa-core processors running at 2.2

Ghz with 15MB cache Intel VT-x support

• 24GB of RAM

• One 1Tb SATA HP Proliant Disk Drive 7.2k rpm G8 (boot

priority)

• One 240Gb SATA HP Proliant Solid State Drive G8

• Two experimental interfaces:

• One Dual port PCIe Intel Ten Gigabit Ethernet card for

experimental ports

• One Quad port PCIe Intel Gigabit Ethernet card, presently

with one port wired to the control network

The bpc2800 machines have the following features:

• Sun Microsystems Sun Fire V60 Chassis

• One Intel(R) Xeon(R) CPU dual core processor running at

2.8 GHz

• 2 GB of RAM

• One 36 GB SCSI Disk Drive

• Two Dual port PCI-X Intel Gigabit Ethernet cards, 1 port

for control network and 3 ports for experimental network

• One Single port PCI-X Intel Gigabit Ethernet card for ex-

perimental network

Finally, for our IoT experiment, we used four Raspbery Pi boards

ranging over the released model revisions. Specifically we used (1)

a Raspberry Pi Model B, revision 2.0, (2) a Raspberry Pi Zero, (3) a

Raspbery Pi 2 Model B v 1.1, and (4) a Raspberry Pi 3 Model B v 1.2.

We deployed the Linux kernel 4.9.65 on all four boards and used

the kernel’s cryptographic API to profile their performance.

16

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 TCP primer and SYN flood attacks
	2.2 Client puzzles

	3 The Game-Theoretic Model
	3.1 Assumptions and threat model
	3.2 Difficulty Selection as a Stackelberg Game

	4 Application to The Juels Puzzle scheme
	4.1 The Solution
	4.2 Analysis
	4.3 Obtaining model parameters
	4.4 Example

	5 Implementation
	6 Evaluation
	6.1 Experiment 1: Impact of puzzles on client performance
	6.2 Experiment 2: SYN and connection flood protection
	6.3 Experiment 3: Nash equilibrium strategy
	6.4 Experiment 4: Botnet effectiveness
	6.5 Experiment 5: Adoption of TCP puzzles
	6.6 Experiment 6: Impact on IoT devices

	7 Limitations and Discussion
	8 Conclusion
	References
	A Proof of Theorem 1
	A Experiment Topology and machines

