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Abstract—In this work, we set out to develop P4AIG, a tool for
the static verification of programmable data planes using sequen-
tial circuit analysis. P4AIG targets P4 programs by treating them
as hardware pipelines rather than software programs. P4AIG
allows for the circuit-level treatment of P4 programs, a feature
not available for traditional software verification techniques. We
believe that P4AIG will exploit the nature of P4 programs to
achieve higher scalability in verification.

I. INTRODUCTION

Programmable data planes allow for a significant shift

in the paradigms of modern network designs. Data plane-

specific programming languages, such as P4 [1], allow net-

work designers to design, develop, modify, and test packet-

forwarding protocols and pipelines in a hardware-agnostic

manner. However, with great programmability comes design-

time bugs, causing faults that can have drastic impacts on the

performance and the security of networking systems [2].

Current approaches to testing programmable data plane im-

plementations rely on exhaustive testing using simulation and

automated packet generation software [3]. However, testing

based techniques are expensive as they are searching a large

space of inputs; testing must cover all possible types of packets

with different protocols, both valid and invalid. Furthermore,

testing can confuse bugs that occur in the data-plane program

and its semantics with those that occur due to a specific compi-

lation of the program into a hardware-specific implementation.

Different vendors might generate different implementations of

the same data-plane program, thus introducing potential bugs

that are not derivatives of the program semantics.

Complementary to exhaustive testing are static verification

techniques that leverage SAT and SMT solvers to verify anno-

tated data-plane programs. Current verification techniques [3]–

[6] treat P4 programs as traditional software programs and rely

on symbolic execution as their main verification engine. How-

ever, by adopting such a software approach, these techniques

become language dependent; every data-plane programming

language requires different software and language-dependent

verification techniques. More fundamentally, software verifica-

tion techniques target Turing complete languages while data-

plane programs describe restricted hardware pipelines that are

bounded and simpler to verify.
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Fig. 1: High Level Overview of P4AIG

In this work, we will explore the fundamental property of

data-plane programs – namely, that they describe restricted

hardware pipelines – to achieve scalable verification. We

propose P4AIG: a tool for the formal verification of data-

plane programs using hardware verification techniques. P4AIG

is inspired by the work in [7] showcasing that the translation

of software programs into equivalent sequential circuits can

significantly improve their verification. Specifically, we believe

that the boundedness and the features of data-plane programs

make them ideal candidates for such a translation: they operate

on bounded inputs, theirs loops are linearly bounded by the

number of packet headers, and they do not use dynamic mem-

ory allocation. In this paper, we target P4 programs, however,

P4AIG can be easily applied to different languages since it

performs verification at the hardware packet-forwarding level.

II. P4AIG: CIRCUIT-LEVEL VERIFICATION OF P4

PROGRAMS

Figure 1 shows the high level overview of our proposed

approach. P4AIG is composed of two main units: (1) a

translation unit and (2) a verification unit.

Program Annotations: First, P4AIG takes as input the orig-

inal P4 program that we wish to verify. In addition, we

require the application developers to annotate their code with

First Order Logic (FOL) specifications ( 1 1) in the form of

in-code statements (similar to assertions in [4], [6]). These

specifications identify the desired behavior of the P4 pipeline

and are to be manually specified by the developers. The

combination of the P4 program and the program annotations

1 · refers to annotations in Figure 1.
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/* basic.p4: 49 - 71 */
parser MyParser(packet_in packet, out headers hdr,

inout metadata meta,
inout standard_metadata_t standard_metadata) {

state start { /* @L1 */
transition parse_ethernet;

}
state parse_ethernet { /* @L2 */

packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {

TYPE_IPV4: parse_ipv4;
default: accept; /* def. accept: @L4 */

}
}
state parse_ipv4 { /* @L3 */

packet.extract(hdr.ipv4);
transition accept;

}
}

(a) Sample P4 parser code from basic.p4.
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(b) Equivalent sequential circuit.

Fig. 2: A simple parser showing the state machine that extracts and processes layers 2 and 3 information from ingress packets.
We add location labels for each state (@LX comments in the code). On the right hand, we show the equivalent sequential
circuit capturing the control flow of the parser. Ovals represent constants while boxes represent registers. Inputs into registers
represent their next state that will get updated after each clock cycle. For brevity, we elide the details for the hdr register.

will constitute a complete definition of the network forwarding

plane that is then fed into the P4AIG translation unit ( 3 ).

Handling the Control Plane: Data plane programs, as defined

by P4, only comprise half of a software defined network
program; they only serve to define the forwarding behavior

of the network, while the actual forwarding decision are left

for the control plane. Practically, the control plane defines

the contents of the match-action tables in a P4 program.

Therefore, P4AIG must be able to capture the control plane’s

behavior in order to accurately verify networking programs.

One way to tackle this challenge is to over-approximate the be-

havior of the control plane using free inputs, i.e., inputs whose

values are non-deterministically assigned at verification time.

However, this approach suffers from two main drawbacks: (1)

it introduces many false positives and (2) it explodes the search

space thus increasing the verification complexity.

P4AIG overcomes this challenges by analyzing the control

plane program and generating FOL invariants ( 2 ) that are

then passed into P4AIG’s main translation unit. These invari-

ants will serve as constraints that P4AIG will use to prune

the search space over the control plane actions. Compared to

other approaches [4], P4AIG does not require control plane

annotations and can easily be used to verify the same P4
program with different control plane implementations.

Generating and Verifying Sequential Circuits: P4AIG’s

main translation unit ( 3 ) takes as input the annotated P4
program as well the generated control plane invariants and

produces an equivalent sequential circuit, encoded as an And-
Inverter-Graph (AIG). Figure 2 shows a sample P4 packet

parser program (basic.p4) 2 and the equivalent representa-

tion of its control flow as a sequential circuit.

Following the approach in [7], we will prove that the

generated AIG is semantically equivalent to the original P4
program; the generated AIG ( 4 ) encodes the bit-level seman-

tics of the P4 program and emulates its data plane pipeline.

2https://github.com/p4lang/tutorials/blob/master/exercises/basic/solution/basic.p4

In addition, P4AIG translates the FOL specifications into bit-

assertions that are to be used for the verification step.

P4AIG’s pipeline concludes with the verification unit ( 5 ).

It takes the generated sequential circuit along with its assigned

bit-assertions and uses hardware verification tools, such as

ABC [8], to check its validity. It reduces the size of the

circuit using synthesis, rewriting, and abstraction techniques,

and then verifies the specifications using circuit SAT solvers

and bounded model checking. Any counter-example traces that

result in a violation of the program’s specifications will be

passed back to the developers for debugging. We will develop

P4AIG as an open-sourced tool and compare it to existing

verification techniques using an array of P4 programs.
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